Remote sensing has the potential to transform water quality modeling and watershed management, and yet a quantitative mapping of where its applicability is likely and most useful has not been undertaken so far. Here, we combine geospatial models of cloud cover as a proxy for the likelihood of acquiring remote scenes and the shortest time of travel to population centers as a proxy for accessibility to ground-truth remote sensing data for water quality monitoring and produce maps of the potential of remote sensing in watershed management in the United States. We generate several maps with different cost-payoff relationships to help stakeholders plan and incentivize remote sensing-based monitoring campaigns. Additionally, we combine these remote sensing potential maps with spatial indices of population, water demand, ecosystem services, pollution risk, and monitoring coverage deficits to identify where remote sensing likely has the greatest role to play. We find that the Southwestern United States and the Central plains regions are generally suitable for remote sensing for watershed management even under the most stringent costing projections, but that the potential for using remote sensing can extend further North and East as constraints are relaxed. We also find large areas in the Southern United States and sporadic watersheds in the Northeast and Northwest seaboards and the Midwest would likely benefit most from using remote sensing for watershed monitoring. Although developed herein for watershed decision support in the United States, our approach is readily generalizable to other environmental domains and across the world.